To cut emissions, give microbes more copper?
When microbes donât get the metals they need, the result may have consequences for the environment.
Microbes need some metals in their diet to stay healthy, as do we. The metals help the microbes fully âdigestâ food. After a good meal, the microbes that gain energy by chemically reducing nitrate release a harmless byproduct: nitrogen, the gas that makes up 78% of Earthâs atmosphere.
ââŚadding a little copper, which in small amounts is a nutrient, may actually cut down on emissions of this greenhouse gas from wetlands.â
But if one metal in particular, copper, isnât available, these microbes canât complete the biochemical âdigestiveâ process, called denitrification. Instead of releasing nitrogen, theyâll release the potent greenhouse gas nitrous oxide.
Previous lab studies using pure cultures have shown that copper availability was important for denitrification. Now research from the lab of Daniel Giammar, professor of environmental engineering at the McKelvey School of Engineering, and Jeffrey Catalano, professor of earth and planetary sciences, both at Washington University in St. Louis, has shown that in the complex, dynamic aquatic environments these microbes call home, there might not always be enough copper available for denitrification.
The findings appear in the journal Geochimica et Cosmochimica Acta.
âMaterial in a beaker is not the same as material in the environment,â Giammar says. âA big part of our approach was to take real materials from real environmental systems and bring them to the lab and look at them in controlled ways.â
The findings underscore the outsized role of copper when it comes to the release of nitrous oxide. âAt regular, background levels, these systems may not have enough metals to carry out the process,â says Neha Sharma, a PhD student in Giammarâs lab.
Thatâs important because nitrous oxide is the third most potent greenhouse gas and 50% of it comes from microbes in aquatic ecosystems.
âNehaâs study is the first to show the link between nitrous oxide production and copper in wetlands. This connection had been displayed previously by bacteria in the laboratory but had never been demonstrated to happen in these natural aquatic systems,â Catalano says.
âHer work may suggest that adding a little copper, which in small amounts is a nutrient, may actually cut down on emissions of this greenhouse gas from wetlands.â
Wetland microbes and copper
To better understand how copper affected the gasâs release in these systems, Sharma and Elaine Flynn, a senior scientist in Catalanoâs lab, went to the source. Working with three US Department of Energy (DOE) labsâOak Ridge and Argonne national laboratories and the Savannah River SiteâSharma and Flynn collected microbes from wetlands and riverbeds. When they analyzed how much copper was in the systems, they realized it wasnât enough to complete denitrification.
âThen we wanted to see, if we manually added copper, would it affect the release of nitrous oxide,â Sharma says. It did. âAll of the nitrous oxide was converted into other things,â but no harmful greenhouse gases.
This finding could point to new ways to curb a warming atmosphere, Sharma says. âIf we put a bit of metals into the natural systems, it might mitigate the release of N2O,â she says. It also could have a more immediate effect for researchers who study climate.
âCurrently, models that are predicting the release of gases from various systems do not account for these factors,â Sharma says. âThey know factors like food availability or temperature might affect greenhouse gas release, but they donât include the effect of metals on this aspect of greenhouse gases.â
Four different metals
For people to truly understand and make useful predictions about climate, climate models need to incorporate all of the real-world complexity present in specific ecosystems.
Another study, published in the journal ACS Earth & Space Chemistry, analyzes the behaviors of four different metals from riparian wetland soils from the Savannah River Site and stream sediments near the Oak Ridge National Laboratory.
The research team, including Sharma and Zixuan Wang, a PhD student in the lab of Zhen âJasonâ He, professor of energy, environmental, and chemical engineering, wanted to know if the metalsâ availability changed when the metals were underwater (and there was little oxygen) versus when they were exposed to the air.
The team had reasons to believe that the four metalsâall important for microbesâ biochemical reactionsâmight all act similarly. To their surprise, however, the metals acted differently in similar situations.
âThis means the bioavailability of certain metals changes with seasons,â Sharma says. âIt just highlights the extreme complexity of natural systems.â
Capturing that complexity calls for a variety of specialists and partners.
âWeâre environmental engineers, weâre always thinking âwhy does this matter? Whatâs this going to do for the climate? What can be done?ââ Giammar says. âBut also, we collaborated with primary investigator Jeffrey Catalano,â which gave the work a strong geochemistry perspective.
Along with receiving funding and access to watersheds from the DOE laboratories, this research is also contributing to the DOEâs knowledge base.
It provides one more piece of the puzzle of âwatershed function,â the study of the biogeochemical functions or watersheds and their inhabitants. Meanwhile, other researchers in other fields do the same.
Together, knowledge can change the way people understand the watershedâs relationship to climate.
âIf anything, we saw the copper limitation was a bigger deal than we thought,â Giammar says. âThatâs why I think getting into this environmental complexity is important.â
Support came from the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Subsurface Biogeochemical Research program.
Source: Washington University in St. Louis
Original Study
DOI: 10.1016/j.gca.2022.04.019
by Brandie Jefferson-WUSTL
Published on 2022-06-22